Association for Internet Development

Creating Richmedia banner in HTML5

To create a banner, or a style-adapted HTML5 code, there exist different tools with a number of advantages and disadvantages. But they can serve to create some more complex effects. Survey of some HTML5/CSS3 generators:

http://www.webdesignerdepot.com/2012/04/15-great-html5-and-css3-generators/
SWF to HTML5 online convertor (code requires remote library):

https://developers.google.com/swiffy/Google Web

Designer – html5 banner by Google:

http://www.google.com/webdesigner/

You can see a finished banner from the following example at the following address:

http://www.spir.cz/sites/default/files/banner/index.html, and a complete code through the „view the source code“ option on the page with the banner.

What you need to do that:

Basically, you just need a simple editor like notepad, an image editor and a browser for testing. For clearer writing a check, of course, you use a favourite html-css code editor, such as Notepad++, PSPad, Sublime, or possibly some suitable IDE with tags and their possible values prompter. A fast images administrator with basic adjustments will be good for images of the data supplied (IrfanView, Picasa, Xnview, etc.), for their creation some of the editors (opensource Gimp, Photoshop) or even vector editors with export to bitmap formats.
Preparation of the source data and project
After reflection and approval of content of the so-called Scenario (what the banner should display and how to behave), prepare auxiliary pictures in 1:1 size in the appropriate format and compression, and any other files, such as external font.
Fonts, if it comes to worst, can be imported. The problem is the increase in data size, despite the theoretical "help" from the file caching from the browser. The loaded fonts can be just shrunk in a good preparation process. There exist two options for the font usage, they are the so-called Webfonts – loaded from remote storage (google.com/fonts) or prepared fonts in woff format. In both cases, though adequate preparation, data can be reduced to a minimum by a simple preparation of the font just for the letters used in the text of our banner.
An example from the google fonts imported as woff for the text „Preparation of the source data and project“:
http://fonts.googleapis.com/css?family=Inconsolata&text=P%u0159%EDprava%20podkladu

%20a%20projekt%u016F
Such a „stripped down“ has only 4.9kB; without stripping to the really used characters, it has about 50kB!

Similarly, woff font files can also be adjusted this way (links to google fonts are in fact definitions for the creation of a font-face style with an external file).

Starting on an „empty canvas“

In the code editor, prepare a blank document. Although the banner code does not need document structure (html declaration, header, loading styles and scripts before the body and the <body> tag in general); for the testing during the preparation we need a „fully-fledged“ document with the „HTML doctype“ declaration for the displaying in the HTML5 regime.

The first container tag <div> is used to create a banner dimensions of fixed dimensions – in our case 300x250. Write style attributes into the tag (i.e. Inline style record) with values width:300px;height:250px. Directly enter also the frame - border: 2px solid #ee2e24; and because you do not want to deduct anything from the width and height, declare also that the frame is drawn inside the element: box-sizing: content-box;

Elements on the scene
In such a prepared DIV, now place the individual graphic elements and html tags to fill in the background, display text or appropriate buttons – if the whole area is not or clicking. Set positions for the elements any you can start animating. Setting of the initiation positions is important for the correct display in browsers not supporting all the new tags for animations and decorations – you can test it for example in IE8.
A little movement into the banner
CSS3 offers a few new properties not only for decorations such as shadowing, rounded corners and colour transitions, but also the behaviour of styles of these elements in time. In our case, we have done the background colour transition of a blue sky and placing one figure three times, such as clouds in three different sizes. In style definition, the declaration of the animation has the value @keyframes. For three different clouds, we created a common design in the style:
@keyframes cloud-animation-group {

 0% {

 left: -130px;

 }

 99.9999% {

 left: 300px;

 }

 100% {

 left: 0px;

 }

}

Make the clouds move using the CSS command with a reference to the prepared object cloud-animation- group - animation: cloud-animation-group XYZs infinite linear; where the XYZs value is different for every cloud.

Make the pilot move also in a similar manner. Again, we have an object prepared:

@keyframes pilot-animation {

 0% {

 top: 35px;

 }

 50% {

 top: 38px;

 }

 100% {

 top: 34px;

 }

}

which we will assign to the „pilot“ class. Without crossing it with the mouse, it thrashes about in the clouds as flight simulation: „animation: pilot-animation 400ms infinite linear;“ Upon crossing with the mouse, in a manner similar to the clouds, it „runs“ to the side and disappears from the visible area: animation: pulse 1s infinite linear;

Change in appearance when moving the mouse on the banner
After moving the mouse across the banner, we can see the text hiding, a new element of the button with animation and a new animation of the plane.
Change of text:
After moving the mouse across the banner, there is a simple invisibility of the text containing element with the „title“ class:

#banner:hover .title {

 display: none;

}

and display of the prepared element of the „button“ class with text hover:

#banner:hover .button {

 display: inline-block;

}

To this element, also a „pulse“ class is added, through which animation is created of magnification and shrinking of the element in a loop.

In a similar manner, the „pilot“ animation is re-set through a similar construction:

#banner:hover .pilot {

 -webkit-animation: pilot-animation-go 4s infinite ease;

 -moz-animation: pilot-animation-go 4s infinite ease;

 -o-animation: pilot-animation-go 4s infinite ease;

 -ms-animation: pilot-animation-go 4s infinite ease;

 animation: pilot-animation-go 4s infinite ease;

}

Background as a colour transition and data:

In the banner background definition we have several manners for the background creation.

.content {

 position: absolute;

 top: 0;

 width: 100%;

 height: 100%;

 background-colour: #ed2d23 !important;

 background-image:

url();

 background-image: -moz-linear-gradient(bottom, #fff 0%, #96eaff 100%);

 background-image: -o-linear-gradient(bottom, #fff 0%, #96eaff 100%);

 background-image: -webkit-linear-gradient(bottom, #fff 0%, #96eaff 100%);

 background-image: linear-gradient(bottom, #fff 0%, #96eaff 100%);

 text-align: center;

}

First, the background colour is set. First try to adjust the colour gradient by an image, in case the browser does not support colour transition. The picture file itself is not registered as an external file, but as a data image file, in this case, in the svg format.

Other „background-image“ attributes, in a simple transition entry, create a gradient with a description of the direction, colours, transition and their intensity.

Note: the „data“ attribute instead of the external file has both advantages and disadvantages. The advantages include reducing the number of http request calls. For the banner code, in addition, it is the advantage of result compactness (a single code is inserted into the banner instead of uploading other files with images). One of the drawbacks is the increase in data size of the result compared to the binary template. Transfer to these data can be done by some programs and you will find many online converters on the Internet, for example http://dataurl.net.

It is possible to "secure" the look of the elements in the CSS transcription by repeating and by prefixes for browser cores. You proceed from basic minimum displays (background colour), definitions for the individual cores and browser versions to the last general one by the HTML5 standard – the browser tries to handle all the lines and the last successful command overwrites the previous ones, i.e. also older browsers process such orders into certain steps.

Click-throughs from the banner
In the case that we want the whole area to be clickable as if all the banner were GIF, for instance, we "wrap" the entire prepared DIV from the first step with an <a> tag with href and target attribute. We can put an arbitrary link to href – it will be changed to a dynamic variable when used in the banner. At the link target, which can also be changed when inserted into the advertising system, be sure to put the _top value (opens in a browser in the original window even if the banner were inserted through iframe).

If we want to have only certain elements referenced, we must perform a similar „tuning“ in these individual elements. n our case, it would be the HOVER tag.
CSS writing
Vzhledem k tomu, že nevíme, v jakém finálním dokumentu bude banner vykreslen, je nutné dát pozor i na nežádoucí dědičnost ať z nadřízených prvků stránky nebo naopak z naší špatné deklarace do ostatních prvků

Unlike compared to a separate page, we must take care when working with classes and IDs of the unique names chosen = use prefixes, accurate and specific elements addressing. Since we do not know what final document the banner will be drawn in, it is necessary to be careful also about undesirable inheritance from its superior page elements, or vice versa from our poor declaration to other page elements. Due to the latter reason, it is advisable, just to be sure, to declare also the values that would be expected by default in a blank document, such as the size and colour of the text, borders etc.

Styles, if possible, should be written "inline" into the "style" attribute, right on the html element. If you must write CSS in block, remember the above rules for writing to previously unknown sites with their own CSS rules. Even in tuning in full html, block is written to block html <body>.

Testing and tuning before delivery.

After production test the banner in all current browsers - at least in the Explorer (10+), Firefox, Chrome trio; ideally also in mobile browser versions.

HTML5 banners with animation presume to be displayed only in modern browsers. For older browsers, just create the code by displaying a simplified static version (imobile elements in visible positions, visible text and functional link).
After the functionality testing step, check the code whether there is some duplication, forgotten code fragments or notes that would be possible to remove in the finished project and make easier with less code. After these adjustments, test the functionality in web browsers again (you can swap these steps).

The last phase is the check and optimization of data size. The banner data is all transferred by bytes for display, i.e. including fonts, libraries, external pictures etc. All you need is to check the size of the folder with used for project files, and in the case of external fonts, also check the browser transmits to us. Run a test also after this adjustment.

A few tips for the shrinking of data size:

1. Choose a suitable image format (jpg, png, gif), check whether the image is really used in 1:1 size (no source bigger than the visible area or dimension in the banner), whether it is possible to reduce the number of colours (gif, png) or increase compression (jpg).

2. Check the script code, html and css. It is not too dangerous in case of manual setting, but while preparing CSS from generators, there often arise large results from the robotic processing, which decorates also invisible parts and considers literally everything, even the eventualities that will not take place. External libraries and fonts, if they are really necessary and if they do not affect the carrier page (which we nothing about) should be loaded in the minimum required version – fonts only with the actually used characters (if the banner is not created as a form to enter the name, for instance), libraries of only the parts, that relate to properties in the used banner.

Image format should be chosen according to the target result and its properties. Try to use as few images as possible, we've got CSS for all the other things.

Compress the images, or reduce the number of colours. Use JPG for photos, where there is a large variety of colours. PNG is used for icons, illustrations and images with transparent backgrounds. Similarly, GIF is used for simple illustration with fewer colours.

Online tool and plugin for Photoshop for PNG compression - https://tinypng.com/

Banners and web coding - FAQ

Why is HTML(5) banner not created as an independent document and inserted as an iframe?

Under certain circumstances, iframe can be used as a source (then the banner, including the declaration, head and body tags, when the style tag can be in front of the body, does not affect the document etc.). But given every click to be reckoned with, there would have to be an adjustment made in such html for the link address forwarding to the advertising system, and such a banner cannot be used simply for ilayer types (unpacking through the page content etc.). Such a possibility, despite advantages, has rather more restrictions. In contrast, a well-prepared compact code and pluggable straight and can be placed directly through a fast adjustment by insertion into an empty HTML (5) document as iframe.

Can javascript be used?

Yes. It needs to be written so that it does not affect other elements than those in the banner (using ID with unique names, i.e. not to attribute id="main" to the banner div etc.), and that it does not require an external library or even expect such a library to exist on the target page (jquery, mootools, etc.). It is necessary to consult or check possible exceptions in advance (for example, banner goes into a specific publisher site that uses a library that the banner can use).

Fonts and libraries are cached, so why do they count in the data size?

In the banner, you cannot rely on the fact that the banner is seen x-times and such a file would not be transferred again. It is therefore necessary to take the worst case scenario – i.e. every view means the transfer of all data of the banner.

Auxiliary tools you can use:

PNG compression - https://tinypng.com/

WYSIWYG animations editor for HTML5, CSS3 - http://html5maker.com/app,

https://www.google.com/webdesigner/

Basic image treatment: http://www.irfanview.com/, http://www.xnview.com/en/

Tools for HTML5: http://html5maker.com/#/

http://www.webdesignerdepot.com/2012/04/15-great-html5-and-css3-generators/

SWF to HTML5 online conversion: https://developers.google.com/swiffy/

- 7 -

